Thermal gradient induced tweezers for the manipulation of particles and cells
نویسندگان
چکیده
Optical tweezers are a well-established tool for manipulating small objects. However, their integration with microfluidic devices often requires an objective lens. More importantly, trapping of non-transparent or optically sensitive targets is particularly challenging for optical tweezers. Here, for the first time, we present a photon-free trapping technique based on electro-thermally induced forces. We demonstrate that thermal-gradient-induced thermophoresis and thermal convection can lead to trapping of polystyrene spheres and live cells. While the subject of thermophoresis, particularly in the micro- and nano-scale, still remains to be fully explored, our experimental results have provided a reasonable explanation for the trapping effect. The so-called thermal tweezers, which can be readily fabricated by femtosecond laser writing, operate with low input power density and are highly versatile in terms of device configuration, thus rendering high potential for integration with microfluidic devices as well as lab-on-a-chip systems.
منابع مشابه
Optoelectronic Tweezers for Cell and Nanoparticle Manipulation
Optoelectronic tweezers (OET) is a new tool for noninvasive, parallel manipulation of cells and/or micro/nanoparticles. Based on light-induced dielectrophoresis, OET can trap and sort colloidal particles, biological cells, nanowires and nanoparticles using a digital light projector. In this paper, we will present the principle and recent experimental results of OET. Keywords-Optoelectronic twee...
متن کاملAnalysis of Motion of Micro-Gripper Exposed to the Electric Field and Thermal Stresses for Using in Micro-Robotics
Micro system technology is a relatively new scientific research that deals with the development and study of properties of materials in micro dimensions. Micro-grippers are widely used in switching, positioning, and assembling micron sized components in micro-robotics. In this study, the static and dynamic behavior of visco-elastic Micro-Tweezers under the thermal and electrostatic field is...
متن کاملUtilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
A method to manipulate the position and orientation of submicron particles nondestructively would be an incredibly useful tool for basic biological research. Perhaps the most widely used physical force to achieve noninvasive manipulation of small particles has been dielectrophoresis(DEP). However, DEP on its own lacks the versatility and precision that are desired when manipulating cells since ...
متن کاملDesign of Fresnel Lens-Type Multi-Trapping Acoustic Tweezers
In this paper, acoustic tweezers which use beam forming performed by a Fresnel zone plate are proposed. The performance has been demonstrated by finite element analysis, including the acoustic intensity, acoustic pressure, acoustic potential energy, gradient force, and particle distribution. The acoustic tweezers use an ultrasound beam produced by a lead zirconate titanate (PZT) transducer oper...
متن کاملA Plasmonic Spanner for Metal Particle Manipulation
Typically, metal particles are difficult to manipulate with conventional optical vortex (OV) tweezers, because of their strong absorption and scattering. However, it has been shown that the vortex field of surface plasmonic polaritons, called plasmonic vortex (PV), is capable of stable trapping and dynamic rotation of metal particles, especially those of mesoscopic and Mie size. To uncover the ...
متن کامل